Journal of Organometallic Chemistry, 378 (1989) 469-472 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20287

The ¹⁵N NMR spectra of some dihydrobis(triphenylphosphine)rhodium(III) complexes of aromatic N-donor carboxylates

Laurence Carlton * and Marie-Paula Belciug

Department of Chemistry, University of the Witwatersrand, Johannesburg (Republic of South Africa) (Received July 12th, 1989)

Abstract

¹⁵N (natural abundance) NMR spectral data are reported for a series of complexes $[RhH_2(PPh_3)_2(NArCO_2)]$ (NArCO₂ = pyridine-2-carboxylate, 6-methylpyridine-2-carboxylate, pyrazine-2-carboxylate, quinoline-2-carboxylate, isoquinoline-1-carboxylate, and quinoxaline-2-carboxylate), and were obtained by the IN-EPT method with polarisation transfer from the hydride lying *trans* to nitrogen. The ¹⁵N signal moves upfield by 35–50 ppm up on coordination of nitrogen to the metal, ²J(¹⁵N-¹H_{trans}) has a value of ca. 25 Hz, and ¹J(¹⁰³Rh-¹⁵N) lies in the range 9.1-10.1 Hz.

Introduction

The sensitivity of the ¹⁵N nucleus to its chemical environment makes ¹⁵N NMR spectroscopy a potentially valuable technique in the study of metal complexes of nitrogen-donor ligands. However its usefulness is limited by the low natural abundance (0.37%) of ¹⁵N, which necessitates high sample concentrations (since in most cases ¹⁵N enrichment is not feasible), and consequently by the availability, solubility and stability in solution of the compound of interest. By means of polarisation transfer methods (e.g. INEPT [1]) signal intensities can be enhanced by a factor $\gamma H/\gamma N = 10$, reducing the time required for data collection by a factor of 100 and making possible use of samples of concentration $\geq 0.05 M$ (in a field of 4.7 T and a tube of 10 mm diameter). The applicability of these methods is restricted to compounds in which the nitrogen is spin-coupled to at least one hydrogen with a coupling constant of sufficient magnitude to permit the successful operation of the polarisation transfer pulse sequence.

In many cases the N-donor ligand either contains no hydrogen or shows too small a ${}^{15}N{-}^{1}H$ coupling or too complex a coupling pattern to be of practical value. Here a ${}^{15}N{-}^{1}H$ coupling to a hydrogen independent of the ligand is a potential



Fig. 1. Structure of the complexes [RhH₂(PPh₃)₂(NArCO₂)].

answer; such coupling is found in metal hydride complexes in which the hydride lies *trans* to the N-donor ligand. Measurement of ${}^{2}J({}^{15}N-{}^{1}H_{trans})$ requires a complex with a second ${}^{15}N-{}^{1}H$ coupling of known magnitude through which to transfer polarisation, and a fairly high solubility in a suitable solvent. The complex [RhH₂(PPh₃)₂(pyridine-2-carboxylate)] (I) (Fig. 1) [2] fulfils these conditions.

Experimental

The complexes $[RhH_2(PPh_3)_3(NArCO_2)]$ (I–VI) were prepared in high yield (70–90%) by reaction of $[RhH(PPh_3)_4]$ with the free carboxylic acid NArCO₂H [2]. They are quite soluble (0.05 to 0.7 *M*) in chloroform (in which they decompose slowly) and methylene chloride (in which they are fairly stable).

Spectra were recorded on a Bruker AC200 FT spectrometer operating at 20.29 MHz, probehead diameter 10 mm. Solutions in CH_2Cl_2/CD_2Cl_2 (~6/1) were prepared under nitrogen, with the nitromethane reference contained in a capillary (internal diameter ~2 mm) aligned along the axis of rotation.

A spectral width of 7000 Hz and an acquisition time of 1.16 s were used; after zero-filling this gave a digital resolution of 0.2 Hz/Pt. The relaxation delay was 4 s. INEPT delay times were based on ${}^{15}N{-}^{1}H$ coupling constants of 2 Hz (for quinoline-2-carboxylic acid), 11 Hz [for the remaining carboxylic acids and for measurement of ${}^{2}J({}^{15}N{-}^{1}H_{trans})$] and 25 Hz [for the ${}^{15}N{}^{1}H$ } spectra of the complexes]. All spectra were obtained with refocussing of magnetisation.

Results and discussion

In an experiment involving complex I, polarisation was transferred from the 6-hydrogen $[{}^{2}J({}^{15}N-{}^{1}H) = 11.4 \text{ Hz}]$ and a spectrum was obtained with decoupling of the aromatic protons only, with coupling to the hydrides still effective. After correction for a phase distortion a value of ${}^{2}J({}^{15}N-{}^{1}H_{trans}) = 25 (\pm 3)$ Hz was determined. Thereafter this ${}^{15}N-{}^{1}H$ coupling was made use of in polarisation transfer, and ${}^{15}N\{{}^{1}H\}$ spectra were recorded in which the coordinated nitrogen resonated as a doublet of triplets (Fig. 2). Spectral data for complexes I–VI are shown in Table 1, and for the free carboxylic acids in Table 2.

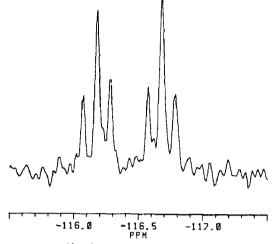


Fig. 2. The ¹⁵N{¹H} spectrum of complex V; 0.3 *M* solution in CH₂Cl₂/CD₂Cl₂, 64000 scans, δ (¹⁵N) relative to neat CH₃NO₂ (ext. standard). ¹J(¹⁰³Rh-¹⁵N) 10.1, ²J(³¹P-¹⁵N) 2.1 Hz.

The ¹⁵N resonances move upfield by 35–50 ppm upon coordination of nitrogen to the metal. The measurements are for samples in two different solvents (DMSO and CH_2Cl_2), but since the ¹⁵N chemical shifts of pyridine in the same two solvents have been reported to differ by only 2.2 ppm [6] this change can be attributed almost entirely to coordination to the metal. Comparison of the chemical shifts of N(4) in free and complexed pyrazine-2-carboxylic acid reveals a relatively small difference of 4.2 ppm, suggesting that N(4) is not greatly influenced by coordination of N(1) to the metal and that electron density back-donated from filled metal orbitals is localised largely on N(1).

The values of ${}^{1}J({}^{103}\text{Rh}{-}{}^{15}\text{N})$ for complexes I–VI cover a narrow range of 9.1–10.1 Hz, indicating that there is little variation in the character of the metal–nitrogen bond and a relatively insignificant influence of the ring substituents. However the presence of a metal-bound carboxyl group *ortho* to the pyridine

Complex	$\delta(N(1))^{\overline{b}}$	δ(N(2))	δ(N(4))	¹ J(¹⁰³ Rh-	¹⁵ N) ^c	$^{2}J(^{31}P-$	⁻¹⁵ N)	$^{2}J(^{15}N-^{1}H)$	(trans)	$^{2}J(^{15}N-^{1}Hc$
1	-115.3			9.7		1.9		25±3		≤ 3
1I	-111.8			9.7		1-2.5				
III	-93.7		- 49.6	9.6		1-2				
IV	-114.1			9.2		1-2				
v		-116.4		10.1		2.1				
VI	-93.8		- 51.0	9.1		1.6				

Table 1 ¹⁵N spectral data for the complexes $[RhH_2(PPh_1)_2(NArCO_2)]^a$

^a Solvent CH_2Cl_2/CD_2Cl_2 . Concentrations: I, 0.7 *M*; II, 0.05 *M*; III, 0.3 *M*; IV, 0.1 *M*; V, 0.3 *M*; VI, 0.2 *M*. Temperature 22° C. 60000-80000 transients recorded from each. ^b Chemical shifts are in ppm relative to neat CH_3NO_2 (external standard), negative values to high field, and are uncorrected for bulk susceptibility effects. The corrected values (ref. [3]) lie 1.4 ppm to low field of the values tabulated. ^c Coupling constants (absolute magnitude) are in Hz.

NArCO ₂ H	$\delta(N(1))^{b}$	δ(N(2))	$\delta(N(4))$	$^{2}J(^{15}N(1)-^{1}H(6))^{c}$	$^{2}J(^{15}N(2)-^{1}H(3))$	$^{2}J(^{15}N(4)+^{1}H(3),^{1}H(5))$
Pyridine-2-carboxylic				····		
acid ^d	-66.7			11.4		
6-Methylpyridine-2-						
carboxylic acid	- 69.1					
Pyrazine-2-carboxylic						
acid "	-47.4		- 45.4	10.9		10.5
Quinoline-2-carboxylic						
acid	- 66.9					
Isoquinoline-1-carboxylic						
acid		- 79.0			11.2	

1537 . . 1 NA CO 11/

^a Solvent DMSO/DMSO- d_6 , concentrations 1.0–1.5 *M*, temperature 22 °C, 5000–10000 transients recorded from each. ^b Chemical shifts are in ppm from neat CH_3NO_2 (external standard), negative values to high field, and are uncorrected for bulk susceptibility effects. The corrected values (ref. [3]) lie 1.0 ppm to low field of the values tabulated. ϵ Coupling constants (absolute magnitude) are in Hz. Values of ${}^{3}J({}^{15}N-{}^{1}H)$ are ≤ 2 Hz. ^d See also ref. [4], ^e See also ref. [5].

nitrogen (complex I) appears to reduce the magnitude of ${}^{1}J({}^{103}Rh{}^{-15}N)$ by a factor of almost two relative to the value reported for a complex of unsubstituted pyridine [trans-Rh(py)₄Cl₂]Cl (17.1 Hz) [7], indicating a substantially reduced s character of the metal-nitrogen bond in the former case. Other complexes for which $^{1}J(^{103}\text{Rh}-^{15}\text{N})$ has been reported are [*trans*-RhCl(CO)(NO)(PPrⁱ₃)₂](ClO₄) (4.5 Hz) [8], [trans-Rh(en)₂Cl₂]Cl (13.4 Hz) [7], [RhCl(PPrⁱ₃)₂(p-MeC₆H₄NSO)] (15.5 Hz) [9], $[Rh(o-phen)_3]Cl_3$ (18.4 Hz) [7], and $[trans-RhCl(N_2)(PCy_3)_2]$ (30 Hz) [10].

The nitrogen-phosphorus coupling constant of 1-2.5 Hz (Table 1) is typical of $^{2}J(^{31}P-^{15}N_{cis})$ [10-12].

Acknowledgements

We thank the University of the Witwatersrand for financial support and Johnson-Matthey for the loan of rhodium.

References

- 1 G.A. Morris and R. Freeman, J. Am. Chem. Soc., 101 (1979) 760.
- 2 L. Carlton, M.P. Belciug and G. Pattrick, to be published.
- 3 M. Witanowski, L. Stefaniak and G.A. Webb, Ann. Rep. NMR Spectrosc., 11B (1981) 1.
- 4 W. Städeli and W. von Philipsborn, Org. Magn. Res., 15 (1981) 106.
- 5 S. Tobias, P. Schmitt and H. Günther, Chem. Ber., 115 (1982) 2015.
- 6 R.O. Duthaler and J.D. Roberts, J. Amer. Chem. Soc., 100 (1978) 4969.
- 7 K.S. Bose and G.H. Abbott, Inorg. Chem., 16 (1977) 3190.
- 8 L.K. Bell, D.M.P. Mingos, D.G. Tew, L.F. Larkworthy, B. Sandell, D.C. Povey and J. Mason, J. Chem. Soc., Chem. Commun., (1983) 125.
- 9 R. Meij, D.J. Stufkens, K. Vrieze, W. Van Gerresheim and C.H. Stam, J. Organomet. Chem., 164 (1979) 353.
- 10 J.R. Dilworth, S. Donovan-Mtunzi, C.T. Kan, R.L. Richards and J.L. Mason, Inorg. Chim. Acta, 53 (1981) L161.
- 11 H. Motschi, P.S. Pregosin and L.M. Venanzi, Helv. Chim. Acta, 62 (1979) 667.
- 12 J. Chatt, M.E. Fakley, R.L. Richards, J.L. Mason and I.A. Stenhouse, J. Chem. Res. (S), (1979) 44.

Table 2